| Citation: | Kashan Memon, Bing Zhang, Muhammad Azam Fareed, Gang Zhao. Encapsulation for efficient cryopreservation[J]. Frigid Zone Medicine, 2025, 5(2): 73-80. doi: 10.1515/fzm-2025-0008 | 
 
	                | [1] | Moniz I, Soares M, Sousa A P, et al. The low survivability of transplanted gonadal grafts: the impact of cryopreservation and transplantation conditions on mitochondrial function. Biology (Basel), 2024; 13(7): 542. doi:  10.3390/biology13070542 | 
| [2] | Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci (Weinh), 2021; 8(6): 2002425. doi:  10.1002/advs.202002425 | 
| [3] | Bojic S, Murray A, Bentley B L, et al. Winter is coming: the future of cryopreservation. BMC Biol, 2021; 19(1): 56. doi:  10.1186/s12915-021-00976-8 | 
| [4] | Pegg D E. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology, 2020; 93: 3-11. doi:  10.1016/j.cryobiol.2020.01.005 | 
| [5] | Netshirovha T R, Makumbane V, Sehlabela L D, et al. Cryopreservation of oocyte in livestock animals: principles, techniques and updated outcomes. 2024. | 
| [6] | von Bomhard A, Elsässer A, Ritschl L M, et al. Cryopreservation of endothelial cells in various cryoprotective agents and media - vitrification versus slow freezing methods. PLoS One, 2016; 11(2): e0149660. doi:  10.1371/journal.pone.0149660 | 
| [7] | Rajan R, Matsumura K. Development and application of cryoprotectants. Survival strategies in extreme cold and desiccation: Adaptation mechanisms and their applications. Adv Exp Med Bio, 2018; 1081: 339-354. doi:  10.1007/978-981-13-1244-1_18 | 
| [8] | Zhang C, Zhou Y, Zhang L, et al. Hydrogel cryopreservation system: an effective method for cell storage. Int J Mol Sci, 2018; 19(11): 3330. doi:  10.3390/ijms19113330 | 
| [9] | Marcantonini G, Bartolini D, Zatini L, et al. Natural cryoprotective and cytoprotective agents in cryopreservation: a focus on melatonin. Molecules, 2022; 27(10): 3254. doi:  10.3390/molecules27103254 | 
| [10] | Naranjo-Alcazar R, Bendix S, Groth T, et al. Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels, 2023; 9(3): 230. doi:  10.3390/gels9030230 | 
| [11] | Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci, 2019; 7(3): 843-855. doi:  10.1039/C8BM01246F | 
| [12] | Wang X, Wang E, Zhao G. Advanced cryopreservation engineering strategies: the critical step to utilize stem cell products. Cell Regen, 2023; 12(1): 28. doi:  10.1186/s13619-023-00173-8 | 
| [13] | Yan X, Chen Y R, Song Y F, et al. Advances in the application of supramolecular hydrogels for stem cell delivery and cartilage tissue engineering. Front Bioeng Biotechnol, 2020; 8: 847. doi:  10.3389/fbioe.2020.00847 | 
| [14] | Tianjin Da Xue. Transactions of Tianjin University. Tianjin: The University, 2005: Vol. 11. | 
| [15] | Aabling R R, Alstrup T, Kjær E M, et al. Reconstitution and post-thaw storage of cryopreserved human mesenchymal stromal cells: pitfalls and optimizations for clinically compatible formulants. Regen Ther, 2023; 23: 67-75. doi:  10.1016/j.reth.2023.03.006 | 
| [16] | Watanabe T, Okitsu T, Ozawa F, et al. Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for longterm glycemic control in diabetic mice. Biomaterials, 2020; 255: 120162. doi:  10.1016/j.biomaterials.2020.120162 | 
| [17] | Benson E E, Harding K, Ryan M, et al. Alginate encapsulation to enhance biopreservation scope and success: a multidisciplinary review of current ideas and applications in cryopreservation and non-freezing storage. Cryoletters, 2018; 39(1): 14-38. http://pubmed.ncbi.nlm.nih.gov/29734412/ | 
| [18] | Han Y, Sun M, Lu X, et al. A 3D printable gelatin methacryloyl/chitosan hydrogel assembled with conductive PEDOT for neural tissue engineering. Composites Part B: Engineering, 2024; 273: 111241. doi:  10.1016/j.compositesb.2024.111241 | 
| [19] | Guan S, Wang Y, Xie F, et al. Carboxymethyl chitosan and gelatin hydrogel scaffolds incorporated with conductive PEDOT nanoparticles for improved neural stem cell proliferation and neuronal differentiation. Molecules, 2022; 27(23): 8326. doi:  10.3390/molecules27238326 | 
| [20] | Todros S, Spadoni S, Barbon S, et al. Compressive mechanical behavior of partially oxidized polyvinyl alcohol hydrogels for cartilage tissue repair. Bioengineering, 2022; 9(12): 789. doi:  10.3390/bioengineering9120789 | 
| [21] | Liu Y, Zhang D, Tang Y, et al. Development of a radical polymerization algorithm for molecular dynamics simulations of antifreezing hydrogels with double-network structures. NPJ Comput Mater, 2023; 9(1): 209. doi:  10.1038/s41524-023-01161-x | 
| [22] | Bercea M. Recent advances in poly (vinyl alcohol)-based hydrogels. Polymers, 2024; 16(14): 2021. doi:  10.3390/polym16142021 | 
| [23] | Tenório-Neto E T. Poly (ethylene glycol)-based hydrogels from preparation methods to applications. Journal of Colloid Science and Biotechnology, 2016; 5(1): 2-15. doi:  10.1166/jcsb.2016.1139 | 
| [24] | Li C, Qian Y, Zhao S, et al. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl, 2016; 64: 43-53. doi:  10.1016/j.msec.2016.03.089 | 
| [25] | Underwood L A. Development and optimization of a preservable three-dimensional bio-construct. Michigan: University of Michigan-Dearborn, 2022. | 
| [26] | Mahou R, Wandrey C. Alginate-Poly (ethylene glycol) hybrid microspheres with adjustable physical properties. Macromolecules, 2010; 43(3): 1371-1378. doi:  10.1021/ma902469f | 
| [27] | Gok O. Physicochemical effects of PEG content in alginate-based double network hydrogels as hybrid scaffolds. TJST, 2024; 19(1): 249256. doi:  10.55525/tjst.1410187 | 
| [28] | Nakamura M, Matsumoto M, Ito T, et al. Microfluidic device for the high-throughput and selective encapsulation of single target cells. Lab Chip, 2024; 24(11): 2958-2967. doi:  10.1039/D4LC00037D | 
| [29] | Ling S D, Geng Y, Chen A, et al. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. Biomicrofluidics, 2020; 14(6): 061508. doi:  10.1063/5.0018785 | 
| [30] | Kumar A, Brown R A, Roufaeil D B, et al. DeepFreeze 3D-biofabrication for bioengineering and storage of stem cells in thick and large-scale human tissue analogs. Adv Sci (Weinh), 2024; 11(11): e2306683. doi:  10.1002/advs.202306683 | 
| [31] | Zhan Y, Jiang W, Liu Z, et al. Utilizing bioprinting to engineer spatially organized tissues from the bottom-up. Stem Cell Res Ther, 2024; 15(1): 101. doi:  10.1186/s13287-024-03712-5 | 
| [32] | Li J, Moeinzadeh S, Kim C, et al. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials, 2023; 293: 121969. doi:  10.1016/j.biomaterials.2022.121969 | 
| [33] | Warburton L, Rubinsky B. Cryopreservation of 3D bioprinted scaffolds with temperature-controlled-cryoprinting. Gels, 2023; 9(6): 502. doi:  10.3390/gels9060502 | 
| [34] | Borges J, Zeng J, Liu X Q, et al. Recent developments in layer-by-layer assembly for drug delivery and tissue engineering applications. Adv Healthc Mater, 2024; 13(8): e2302713. doi:  10.1002/adhm.202302713 | 
| [35] | Su R, Wang F, McAlpine M C. 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip, 2023; 23(5): 12791299. doi:  10.1039/D2LC01177H | 
| [36] | Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol, 2022; 40(1): 93-106. doi:  10.1016/j.tibtech.2021.06.004 | 
| [37] | Li Y, Memon K, Zheng Y, et al. Microencapsulation facilitates lowcryoprotectant vitrification of human umbilical vein endothelial cells. ACS Biomater Sci Eng, 2019; 5(10): 5273-5283. doi:  10.1021/acsbiomaterials.9b00726 | 
| [38] | Meneghel J, Kilbride P, Morris G J. Cryopreservation as a key element in the successful delivery of cell-based therapies-a review. Front Med (Lausanne), 2020; 7: 592242. doi:  10.3389/fmed.2020.592242 | 
| [39] | Kavand A, Noverraz F, Gerber-Lemaire S. Recent advances in alginate-based hydrogels for cell transplantation applications. Pharmaceutics, 2024; 16(4): 469. doi:  10.3390/pharmaceutics16040469 | 
| [40] | Zhao G, Liu X, Zhu K, et al. Hydrogel encapsulation facilitates rapidcooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv Healthc Mater, 2017; 6(23): 10. doi:  10.1002/adhm.201700988 | 
| [41] | Huang H, Choi J K, Rao W, et al. A lginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification. Adv Funct Mater, 2015; 25(44): 6939-6850. doi:  10.1002/adfm.201503047 | 
| [42] | Cheng Y, Zhang X Z, Cao Y, et al. Centrifugal microfluidics for ultrarapid fabrication of versatile hydrogel microcarriers. Applied Materials Today, 2018; 13: 116-125. doi:  10.1016/j.apmt.2018.08.012 | 
