留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prognostic value of combined lymphocyte-to-monocyte ratio and cancer antigen 724 in patients with proximal gastric cancer residing in extremely cold regions

Xiqing Zhu Dali Li Shanshan Liang Huaxing Wu Haibin Song

Xiqing Zhu, Dali Li, Shanshan Liang, Huaxing Wu, Haibin Song. Prognostic value of combined lymphocyte-to-monocyte ratio and cancer antigen 724 in patients with proximal gastric cancer residing in extremely cold regions[J]. Frigid Zone Medicine, 2025, 5(3): 170-179. doi: 10.1515/fzm-2025-0020
Citation: Xiqing Zhu, Dali Li, Shanshan Liang, Huaxing Wu, Haibin Song. Prognostic value of combined lymphocyte-to-monocyte ratio and cancer antigen 724 in patients with proximal gastric cancer residing in extremely cold regions[J]. Frigid Zone Medicine, 2025, 5(3): 170-179. doi: 10.1515/fzm-2025-0020

Prognostic value of combined lymphocyte-to-monocyte ratio and cancer antigen 724 in patients with proximal gastric cancer residing in extremely cold regions

doi: 10.1515/fzm-2025-0020
Funds: 

the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, 2020 LBH-Q20157

More Information
  • Figure  1.  ROC curves of LMR, CA724, and LMR + CA724 score for predicting overall survival. ROC, Receiver operating characteristic; LMR, lymphocyte-to-monocyte ratio

    Figure  2.  Kaplan-Meier survival curves based on LMR, CA724, and LMR + CA724 score. LMR, lymphocyte-to-monocyte ratio

    Figure  3.  Subgroup analysis of combined scoring

    (A) Stage Ⅰ-Ⅱ; (B) Stage Ⅲ-Ⅳ; (C) Non-Borrmann Ⅳ; (D) Borrmann Ⅳ; (E) High-moderately differentiated; (F) Poorly differentiated; (G) Low adhesion cancer.

    Figure  4.  Prognostic nomogram for overall survival and corresponding calibration and decision curve analyses

    (A) Nomogram predicting 5-year survival; (B) ROC analysis of nomogram predicting 5-year mortality rate; (C) Decision curve analysis of nomogram; (D) calibration curve of nomogram.

    Table  1.   Clinical and pathological characteristics of patients with proximal gastric cancer

    Characteristics Overall (N = 313) Score0 (N = 85) Score1 (N = 163) Score2 (N = 65) P value
    Sex (%) Male 258 (82.4) 68 (80.0) 134 (82.2) 56 (86.2) 0.614
    Female 55(17.6) 17 (20.0) 29(17.8) 9(13.8)
    Age (median [IQR]) 61.00 [53.00, 66.00] 60.00 [52.00, 65.00] 60.00 [52.00, 65.00] 64.00 [56.00, 70.00] 0.010
    BMI (median [IQR]) 23.39 [21.45, 25.04] 24.06 [21.45, 25.95] 22.86 [21.37, 24.71] 23.29 [21.30, 24.61] 0.069
    pTNM (%) 66(21.1) 28 (32.9) 29(17.8) 9(13.8) 0.006
    99(31.6) 30 (35.3) 53(32.5) 16 (24.6)
    142 (45.4) 27 (31.8) 77(47.2) 38 (58.5)
    6 (1.9) 0 (0.0) 4 (2.5) 2(3.1)
    Borrmann (%) 0 45(14.4) 17 (20.0) 23(14.1) 5(7.7) 0.267
    20(6.4) 6 (7.1) 10(6.1) 4(6.2)
    53(16.9) 19 (22.4) 25(15.3) 9(13.8)
    176 (56.2) 40 (47.1) 95(58.3) 41 (63.1)
    19(6.1) 3 (3.5) 10(6.1) 6(9.2)
    Lauren (%) Intestinal 147 (47.0) 37 (43.5) 73(44.8) 37 (56.9) 0.351
    Mixed 115 (36.7) 35 (41.2) 63(38.7) 17 (26.2)
    Diffuse 51(16.3) 13 (15.3) 27(16.6) 11 (16.9)
    LVI (%) Positive 158 (50.5) 52 (61.2) 82(50.3) 24 (36.9) 0.013
    Negative 155 (49.5) 33 (38.8) 81(49.7) 41 (63.1)
    PNI (%) Positive 77(24.6) 27 (31.8) 37(22.7) 13 (20.0) 0.182
    Negative 236 (75.4) 58 (68.2) 126 (77.3) 52 (80.0)
    Mesenchyme (%) Medullary 33(10.5) 7 (8.2) 17(10.4) 9(13.8) 0.528
    Intermediate 245 (78.3) 71 (83.5) 124 (76.1) 50 (76.9)
    scirrhous 35(11.2) 7 (8.2) 22(13.5) 6(9.2)
    INF (%) INFa 108 (34.5) 25 (29.4) 60(36.8) 23 (35.4) 0.731
    INFb 121 (38.7) 34 (40.0) 60(36.8) 27 (41.5)
    INFc 84(26.8) 26 (30.6) 43(26.4) 15 (23.1)
    HER2 (%) 0 157 (50.2) 47 (55.3) 83(50.9) 27 (41.5) 0.300
    1 + 108 (34.5) 28 (32.9) 53(32.5) 27 (41.5)
    2 + 30(9.6) 4 (4.7) 20(12.3) 6(9.2)
    3 + 18(5.8) 6 (7.1) 7 (4.3) 5(7.7)
    chemotherapy (%) no 175 (55.9) 51 (60.0) 83(50.9) 41 (63.1) 0.167
    yes 138 (44.1) 34 (40.0) 80(49.1) 24 (36.9)
    Histological.type (%) High-moderately 163 (52.1) 47 (55.3) 77(47.2) 39 (60.0) 0.444
    poorly 94(30.0) 20 (23.5) 56(34.4) 18 (27.7)
    low adhesion 48(15.3) 15 (17.6) 26(16.0) 7(10.8)
    mucinous adenocarcino-ma 8 (2.6) 3 (3.5) 4 (2.5) 1(1.5)
    Tumor.size (median [IQR]) 50.00 [30.00, 60.00] 40.00 [25.00, 55.00] 45.00 [30.00, 60.00] 55.00 [40.00, 80.00] < 0.001
    NMPVR (median [IQR]) 0.41 [0.32, 0.53] 0.38 [0.29, 0.46] 0.41 [0.33, 0.52] 0.47 [0.35, 0.61] 0.006
    NMR (median [IQR]) 8.41 [6.90, 10.00] 8.88 [7.24, 10.07] 8.48 [7.04, 10.12] 7.65 [6.43, 8.80] 0.007
    NLR (median [IQR]) 2.04 [1.54, 2.77] 1.70 [1.30, 2.25] 1.91 [1.53, 2.75] 2.91 [2.23, 3.54] < 0.001
    MWR (median [IQR]) 0.07 [0.06, 0.08] 0.07 [0.06, 0.07] 0.07 [0.06, 0.08] 0.09 [0.08, 0.09] < 0.001
    HALP (median [IQR]) 42.28 [25.37, 60.08] 47.60 [35.09, 66.91] 45.33 [28.52, 60.65] 26.07 [19.94, 42.14] < 0.001
    HPR (median [IQR]) 0.57 [0.41, 0.71] 0.59 [0.44, 0.69] 0.58 [0.41, 0.72] 0.51 [0.33, 0.65] 0.063
    RPR (median [IQR]) 0.06 [0.05, 0.07] 0.06 [0.05, 0.07] 0.06 [0.05, 0.07] 0.06 [0.05, 0.07] 0.723
    PLR (median [IQR]) 125.62 [98.11, 170.11] 115.82 [89.22, 137.16] 123.40 [97.44, 163.60] 173.83 [132.54, 212.29] < 0.001
    AAR (median [IQR]) 1.12 [0.88, 1.33] 1.13 [0.88, 1.33] 1.03 [0.87, 1.27] 1.21 [1.06, 1.55] 0.012
    LAR (median [IQR]) 3.79 [3.45, 4.36] 3.77 [3.40, 4.38] 3.76 [3.48, 4.26] 3.89 [3.46, 4.53] 0.629
    LLR (median [IQR]) 83.54 [65.47, 105.11] 73.86 [60.93, 89.63] 83.24 [64.21, 104.44] 99.38 [80.72, 125.62] < 0.001
    TBAR (median [IQR]) 0.26 [0.21, 0.36] 0.26 [0.20, 0.35] 0.27 [0.21, 0.36] 0.26 [0.21, 0.37] 0.775
    DIR (median [IQR]) 0.57 [0.46, 0.68] 0.57 [0.46, 0.66] 0.56 [0.45, 0.69] 0.60 [0.49, 0.71] 0.207
    GLR (median [IQR]) 2.83 [2.24, 3.56] 2.52 [2.03, 3.03] 2.76 [2.16, 3.57] 3.39 [2.62, 4.27] < 0.001
    FAR (median [IQR]) 0.08 [0.06, 0.09] 0.07 [0.06, 0.08] 0.07 [0.06, 0.09] 0.09 [0.07, 0.10] < 0.001
    FLR (median [IQR]) 1.66 [1.23, 2.15] 1.38 [1.05, 1.77] 1.54 [1.23, 2.07] 2.15 [1.82, 2.72] < 0.001
    IQR, Interquartile range; NMPVR, Neutrophil count/Mean Platelet Volume; LMR, Lymphocyte count/Monocyte count; NMR, Neutrophil count/Monocyte count; NLR, Neutrophil count/Lymphocyte count; HALP, (Hemoglobin × Albumin × Lymphocyte count)/Platelet count; HPR, Hemoglobin/Platelet count; RPR, RDW/Platelet count; PLR, Platelet count/Lymphocyte count; AAR, AST/ALT; LAR, LDH/Albumin; LLR, LDH/Lymphocyte count; TBAR, Total Bilirubin/Albumin; DIR, Direct Bilirubin/Indirect Bilirubin; GLR, Glucose/Lymphocyte count; FLR, Fibrinogen/Lymphocyte count.
    下载: 导出CSV

    Table  2.   Univariate Cox analysis of hematological markers associated with overall survival

    Characteristics Univariate analysis Multivariate analysis Characteristics Univariate analysis Multivariate analysis
    OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
    Sex Mesenchyme
      Male Reference (reference)   medullary type Reference Reference
      Female 1.18(0.76-1.83) 0.457 NA NA   intermedius type 0.76(0.46-1.28) 0.304 NA NA
    Age 1.02(1-1.04) 0.063 NA NA   hard type 0.94(0.47-1.85) 0.852 NA NA
    BMI 0.96(0.91-1.02) 0.196 NA NA INF
    pTNM   INFa Reference Reference
      Ⅰ Reference Reference   INFb 0.73(0.47-1.14) 0.169 0.71(0.43-1.17) 0.1781
      Ⅱ 3.51(1.45-8.48) 0.005 1.45(0.5-4.24) 0.4937   INFc 1.86(1.23-2.79) 0.003 1.08(0.65-1.79) 0.7679
      Ⅲ 11.94 (5.21-27.35) 0 4.18(1.42-12.32) 0.0095 HER-2
      Ⅳ 24.63 (7.47-81.23) 0 8.53(1.99-36.56) 0.0039   0 Reference Reference
    Lauren classification   1 + 0.91(0.62-1.33) 0.617 NA NA
    Intestinal Reference Reference   2 + 0.82(0.43-1.55) 0.540 NA NA
      Mixed 0.93(0.62-1.38) 0.711 0.96(0.56-1.66) 0.8861   3 + 1.28(0.66-2.49) 0.463 NA NA
      Diffuse 1.59(1.01-2.49) 0.045 1.42(0.82-2.44) 0.2069 Chemotherapy
    Borrmann type   No Reference Reference
      Borrmann0 Reference Reference   Yes 0.98(0.69-1.39) 0.905 NA NA
      Borrmann Ⅰ 11.62 (2.47-54.75) 0.002 5.27(0.9-30.72) 0.0649 Histology
      Borrmann Ⅱ 9.12(2.12-39.33) 0.003 3.39(0.6-19.33) 0.1685   High-moderately Reference Reference
      Borrmann Ⅲ 15.47 (3.8-62.9) 0 4.36(0.78-24.23) 0.0927   poorly 1.27(0.84-1.91) 0.252 1.12(0.7-1.78) 0.6378
      Borrmann Ⅳ 43.52 (9.97-189.87) 0 6.9 (1.13-42.12) 0.0365   low adhesion 2.18(1.39-3.41) 0.001 1.98(1.09-3.58) 0.0241
    Lymphovascular invasion (LVI)   mucinous adenocarcinoma 1.73(0.63-4.76) 0.291 1.69(0.57-5.02) 0.3418
      no Reference Reference LMR + CA724
      yes 1.79(1.26-2.54) 0.001 0.74(0.48-1.14) 0.1778   0 Reference Reference
    PNI   1 1.89(1.16-3.1) 0.011 1.42(0.85-2.37) 0.1753
      no Reference Reference   2 4.19(2.48-7.09) < 0.001 3.81(2.17-6.69) < 0.001
      yes 2.17(1.35-3.5) 0.001 1.17(0.68-2.04) 0.5715 Tumor.size (median [IQR]) 1.02 (1.01-1.03) < 0.001 1 (0.99-1.01) 0.5693
    BMI, body mass index; PNI, perineural invasion; INF, infiltrative pattern; HER-2, human epidermal growth factor receptor 2; LMR, lymphocyte-to-monocyte ratio; NA, Not available.
    下载: 导出CSV
  • [1] Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2020; 70(4): 313.
    [2] Soerjomataram I, Lortet-Tieulent J, Parkin D M, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet, 2012; 380(9856): 1840-1850. doi: 10.1016/S0140-6736(12)60919-2
    [3] Botterweck A A, Schouten L J, Volovics A, et al. Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J Epidemiol, 2000; 29(4): 645-654. doi: 10.1093/ije/29.4.645
    [4] Huang Q, Shi J, Sun Q, et al. Clinicopathological characterisation of small (2 cm or less) proximal and distal gastric carcinomas in a Chinese population. Pathology, 2015; 47(6): 526-532. doi: 10.1097/PAT.0000000000000276
    [5] Parfitt J R, Miladinovic Z, Driman D K. Increasing incidence of adenocarcinoma of the gastroesophageal junction and distal stomach in Canada -- an epidemiological study from 1964-2002. Can J Gastroenterol, 2006; 20(4): 271-276. doi: 10.1155/2006/175751
    [6] Wang X, Liu F, Li Y, et al. Comparison on clinicopathological features, treatments and prognosis between proximal gastric cancer and distal gastric cancer: a national cancer data base analysis. J Cancer, 2019; 10(14): 3145-3153. doi: 10.7150/jca.30371
    [7] Röcken C, Behrens H M. Validating the prognostic and discriminating value of the TNM-classification for gastric cancer - a critical appraisal. Eur J Cancer, 2015; 51(5): 577-586. doi: 10.1016/j.ejca.2015.01.055
    [8] Pan Y C, Jia Z F, Cao D H, et al. Preoperative lymphocyte-tomonocyte ratio (LMR) could independently predict overall survival of resectable gastric cancer patients. Medicine (Baltimore), 2018; 97(52): e13896. doi: 10.1097/MD.0000000000013896
    [9] Duzkopru Y, Kocanoglu A, Dogan O, et al. Hemoglobin, albumin, lymphocyte, and platelet score as a predictor of prognosis in metastatic gastric cancer. World J Gastrointest Oncol, 2023; 15(9): 1626-1635. doi: 10.4251/wjgo.v15.i9.1626
    [10] Hannarici Z, Yılmaz A, Buyukbayram M E, et al. The value of pretreatment glucose-to-lymphocyte ratio for predicting survival of metastatic gastric cancer. Future Oncol, 2023; 19(4): 315-325. doi: 10.2217/fon-2022-0579
    [11] Chandra R, Balachandar N, Wang S, et al. The changing face of gastric cancer: epidemiologic trends and advances in novel therapies. Cancer Gene Ther, 2021; 28(5): 390-399. doi: 10.1038/s41417-020-00234-z
    [12] Penta R, De Falco M, Iaquinto G, et al. Helicobacter pylori and gastric epithelial cells: from gastritis to cancer. J Exp Clin Cancer Res, 2005; 24(3): 337-345.
    [13] Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol, 2012; 56(3): 704-713. doi: 10.1016/j.jhep.2011.09.020
    [14] Ye Z, Yu P, Cao Y, et al. Prediction of peritoneal cancer index and prognosis in peritoneal metastasis of gastric cancer using NLR-PLR-DDI score: a retrospective study. Cancer Manag Res, 2022; 14: 177-187. doi: 10.2147/CMAR.S343467
    [15] Shi X, Li S, Wang Y, et al. Predictive value of platelet-to-lymphocyte ratio combined with CA199 levels in postoperative survival of patients with gastric cancer: A retrospective study. Int Immunopharmacol, 2023; 124(Pt B): 110987. doi: 10.1016/j.intimp.2023.110987
    [16] Gong X, Zhang H. Diagnostic and prognostic values of antihelicobacter pylori antibody combined with serum CA724, CA19-9, and CEA for young patients with early gastric cancer. J Clin Lab Anal, 2020; 34(7): e23268. doi: 10.1002/jcla.23268
    [17] Kang M, Jeong C W, Kwak C, et al. Preoperative neutrophillymphocyte ratio can significantly predict mortality outcomes in patients with non-muscle invasive bladder cancer undergoing transurethral resection of bladder tumor. Oncotarget, 2017; 8(8): 12891-12901. doi: 10.18632/oncotarget.14179
    [18] Fridman W H, Pagès F, Sautès-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer, 2012; 12(4): 298-306. doi: 10.1038/nrc3245
    [19] Salazar-Onfray F, López M N, Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev, 2007; 18(1-2): 171-182. doi: 10.1016/j.cytogfr.2007.01.015
    [20] Wilcox R A, Wada D A, Ziesmer S C, et al. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood, 2009; 114(14): 2936-2944. doi: 10.1182/blood-2009-05-220111
    [21] Peng L S, Zhang J Y, Teng Y S, et al. Tumor-associated monocytes/macrophages impair NK-Cell function via TGFβ1 in human gastric cancer. Cancer Immunol Res, 2017; 5(3): 248-256. doi: 10.1158/2326-6066.CIR-16-0152
    [22] Mantovani A, Schioppa T, Porta C, et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev, 2006; 25(3): 315-322. doi: 10.1007/s10555-006-9001-7
    [23] Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature, 2008; 454(7203): 436-444. doi: 10.1038/nature07205
    [24] Toyokawa T, Kubo N, Tamura T, et al. The pretreatment Controlling Nutritional Status (CONUT) score is an independent prognostic factor in patients with resectable thoracic esophageal squamous cell carcinoma: results from a retrospective study. BMC Cancer, 2016; 16(1): 722. doi: 10.1186/s12885-016-2696-0
    [25] Chan J C, Chan D L, Diakos C I, et al. The lymphocyte-tomonocyte ratio is a superior predictor of overall survival in comparison to established biomarkers of resectable colorectal cancer. Ann Surg, 2017; 265(3): 539-546. doi: 10.1097/SLA.0000000000001743
    [26] Chen X Z, Zhang W K, Yang K, et al. Correlation between serum CA724 and gastric cancer: multiple analyses based on Chinese population. Mol Biol Rep, 2012; 39(9): 9031-9039. doi: 10.1007/s11033-012-1774-x
    [27] Liang Y, He M, Fan X, et al. An abnormal elevation of serum CA72-4 by ganoderma lucidum spore powder. Ann Clin Lab Sci, 2013; 43(3): 337-340.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 录用日期:  2025-01-20
  • 网络出版日期:  2025-10-25

目录

    /

    返回文章
    返回